## Further Prenylated Bi- and Tricyclic Phloroglucinol Derivatives from Hypericum papuanum

by Karin Winkelmann<sup>a</sup>), Jörg Heilmann<sup>a</sup>), Oliver Zerbe<sup>a</sup>), Topul Rali<sup>b</sup>), and Otto Sticher\*<sup>a</sup>)

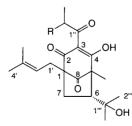
<sup>a</sup>) Department of Applied BioSciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Winterthurerstrasse 190, CH-8057 Zürich
<sup>b</sup>) PNG Biodiversity Research PTY Ltd., Port Moresby, Papua New Guinea

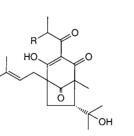
From the petroleum-ether extract of the dried aerial parts of Hypericum papuanum, three new prenylated tricyclic and four new bicyclic acylphloroglucinol derivatives were isolated by bioactivity-guided fractionation. The structures of the bicyclic compounds enaimeone A, B, and C (1/1a, 2/2a, and 3/3a, resp.) were elucidated as rel-(1R,5R,6S)-4-hydroxy-6-(1-hydroxy-1-methylethyl)-5-methyl-1-(3-methylbut-2-enyl)-3-(2-methylpropanoyl)bicyclo[3.2.1]oct-3-ene-2,8-dione (1/1a), rel-(1R,5R,6R)-4-hydroxy-6-(1-hydroxy-1-methylethyl)-5-methyl-1-(3-methylbut-2-enyl)-3-(2-methylpropanoyl)bicyclo[3.2.1]oct-3-ene-2,8-dione (2/2a), rel-(1R,5R,6R)-4-hydroxy-6-(1-hydroxy-1-methylethyl)-5-methyl-3-(2-methylbutanoyl)-1-(3-methylbut-2-enyl)bicyclo[3.2.1]oct-3-ene-2,8-dione (3/3a). The tricyclic isolates 8-hydroxy-3 $\beta$ -(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2methylpropanoyl)- $5\beta H$ -tricyclo[5.3.1.0<sup>1.5</sup>]undec-8-ene-10,11-dione (4), 8-hydroxy- $3\alpha$ -(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2-methylpropanoyl)-5 $\beta$ H-tricyclo[5.3.1.0<sup>1.5</sup>]undec-8-ene-10,11-dione (5), and 8-hydroxy- $3\alpha$ -(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2-methylbutanoyl)- $5\beta H$ -tricyclo[5.3.1.0<sup>1.5</sup>]undec-8-ene-10,11dione (6), and their corresponding tautomers 4a, 5a, and 6a, were named 1'-hydroxyialibinones A, B, and D, respectively. Oxidative decomposition of furonewguinone A (=2,3,3a,5-tetrahydro-3a-hydroxy-2-(1-hydroxy-1methylethyl)-5-methyl-5-(3-methylbut-2-enyl)-7-(2-methylpropanoyl)-benzofuran-4,6-dione; 7) led to furonewguinone B (= 3,3a,7,7a-tetrahydro-3a,6,7a-trihydroxy-2-(1-hydroxy-1-methylethyl)-7-methyl-7-(3-methylbut-2-envl)-5-(2-methylpropanovl)benzofuran-4(2H)-one: 8/8a). Structure elucidation was based on extensive 1D and 2D NMR studies, as well as on data derived from mass spectrometry. Furthermore, the cytotoxicity towards KB nasopharyngeal carcinoma cells and the antibacterial activity were determined.

**1.** Introduction. – In the traditional medicine of Papua New Guinea, the leaves of Hypericum papuanum RIDLEY (vernacular name: enaime) are used to treat sores [1]. Leach et al. [2] reported about the antibacterial activity of a Soxhlet acetone extract of the leaves of *H. papuanum* (Guttiferae) against the *Gram*-positive bacterium *S. aureus*. In our continuing search for biologically active metabolites derived from plants that are employed in the traditional medicine of Papua New Guinea, we have previously isolated 13 acylphloroglucinol derivatives (ialibinones A-E, papuaforins A-E, hyperguinones A and B, and hyperpapuanone) from the petroleum-ether extract of this plant [3][4]. Some of them displayed antibacterial (*Bacillus cereus, Staphylococcus* epidermidis, and Micrococcus luteus) and cytotoxic activity (KB cells). Further study of the more polar fractions of the petroleum-ether extract has now led to the isolation of seven new phloroglucinol derivatives. The bicyclic ring system of 1/1a, 2/2a, and 3/3a forms part of the tricyclic skeleton of the ialibinones. The tricyclic compounds 4/4a, 5/5a, and 6/6a are derivatives of the already mentioned ialibinones A, B, and D. Compounds 7 and 8/8a have a benzofuran skeleton. In addition, the antibacterial and cytotoxic activities of the isolates were evaluated.

2. Results and Discussion. – Compounds 1/1a were isolated as viscous oil. Its DEI-MS displayed a molecular ion at m/z 362 ( $M^+$ ), whereas the HR-MALDI-MS revealed a  $[M + Na]^+$  at m/z 385.1983 (calc. 385.1991). These data are consistent with the molecular formula  $C_{21}H_{30}O_5$  and, therefore, indicated seven degrees of unsaturation. However, doubled <sup>1</sup>H- and <sup>13</sup>C-NMR signals in CDCl<sub>3</sub> (*Tables 1* and 2) in a ratio of approximately 1.7:1 and the absence of further molecular-ion peaks in the MS indicated that the compound is a mixture 1/1a of two enol tautomers, with 1 being the predominant one. The spectral data, including HMBC (heteronuclear multiple-bond correlation) and DOF-COSY (double-quantum filtered correlation spectroscopy) results allow to establish the structure of the preferred tautomer 1 as 4-hydroxy-6-(1hydroxy-1-methylethyl)-5-methyl-1-(3-methylbut-2-enyl)-3-(2-methylpropanoyl)bicyclo[3.2.1]oct-3-ene-2,8-dione. The very unusual HMBC connectivity between the proton OH - C(4) and H - C(2'') can only be explained by through-bond scalar coupling via the H-bond to C(1'')=O. The tautometric form **1a** was identified by means of very similar arguments, and the different position of the enolic OH group could be determined unambiguously by HMBC connectivities. The following assignment strategy refers to the major tautomer.

By means of <sup>13</sup>C-NMR and DEPT experiments, the C-atoms of **1** were sorted into seven Me, two CH<sub>2</sub>, three CH, and nine C. The signals of the three carbonyl atoms C(2), C(8), and C(1'') at  $\delta$ (C) 192.8, 205.8, and 208.4, and a quaternary atom C(4) at  $\delta$ (C) 200.3, substituted by an enolic OH group ( $\delta$ (H) 18.89 (s)), are characteristic signals for tautomeric acylphloroglucinol derivatives. The extremely lowfield-shifted <sup>1</sup>H-NMR signal at 18.89 ppm is common for OH protons which participate in strong H-bonds. The most likely H-bond acceptor is C(1')=O. Signals for  $CH_2(1')$ , H-C(2'), C(3'), Me(4'), Me-C(3') at  $\delta(C)$  25.5, 118.9, 135.2, 26.0, and 18.0 indicate a prenvl residue. This group is attached to C(1) as confirmed by HMBC ( ${}^{13}C, {}^{1}H, {}^{n}J$  correlated 2D, n > 1) cross-peaks between C(1), C(2), C(7), and C(8) and CH<sub>2</sub>(1'). Considering the structural elements described above and five degrees of unsaturation, compound 1 needs to be bicyclic. The spin system comprising H-C(6)


OH

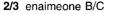

2/2a

3/3a



1 enaimeone A






1a

Main HMBCs of 1: C(1)/CH2(1'), CH2(7 C(2)/CH2(1'), CH2(7) C(3)/OH-CH(4) C(4)/OH-CH(4), H-C(6) C(5)/OH-C(4), CH3-C(5), H-C(6) C(6)/CH<sub>3</sub>-C(5), CH<sub>3</sub>(2"), CH<sub>3</sub>-C(1") C(7)/H-C(6), CH2(1)  $C(8)/CH_3-C(5), CH_2(1'), CH_2(7)$  $C(2')/CH_2(1'), CH_3(4'), CH_3-C(3')$ C(3')/CH<sub>3</sub>(4'), CH<sub>3</sub>-C(3') C(1")/H-C(2"), CH<sub>3</sub>(3"), CH<sub>3</sub>-C(2"), OH-C(4) C(2")/OH-C(4) C(1")/CH2(7)

R = Me

R = Et



2a/3a

|                      | 1                       |                                    | 2                        |                     | <b>3</b> <sup>f</sup> )          |                                           |
|----------------------|-------------------------|------------------------------------|--------------------------|---------------------|----------------------------------|-------------------------------------------|
|                      | $\delta(C)$             | $\delta(H)$                        | $\delta(C)$              | $\delta(H)$         | δ(C)                             | $\delta(H)$                               |
| C(1)                 | 65.6 (s <sup>b</sup> )) |                                    | 65.6 (s <sup>b</sup> ))  |                     | 65.6 (s <sup>b</sup> ))          |                                           |
| C(2)                 | $192.8 (s^{b})$         |                                    | 193.3 (s <sup>b</sup> )) |                     | $193.3 (s^{b}))$                 |                                           |
| C(3)                 | 111.2(s)                |                                    | 107.4 (s)                |                     | 107.7, 107.9 (2s <sup>b</sup> )) |                                           |
| C(4)                 | 200.3(s)                |                                    | 201.7 (s <sup>b</sup> )) |                     | 201.7 (s <sup>b</sup> ))         |                                           |
| C(5)                 | $62.5(s^{b}))$          |                                    | 62.7(s)                  |                     | $62.9(s^{b}))$                   |                                           |
| H-C(6)               | 53.8 (d)                | $2.09 (m^{e})$                     | 50.0(d)                  | 2.28                | 50.0(d)                          | 2.27                                      |
| . ,                  | . ,                     |                                    |                          | (dd, J = 5.4, 10.0) |                                  | (dd, J = 5.5, 9.7)                        |
| CH <sub>2</sub> (7)  | 29.3 (t)                | $2.09 (m^{e}))$<br>$2.13 (m^{e}))$ | 31.3 <i>(t)</i>          | $2.04 (m, 2 H)^{e}$ | 31.2, 31.3 (2 <i>t</i> )         | $1.98 - 2.09 (m^e))$                      |
| C(8)                 | $205.8(s^{b})$          |                                    | $207.1 (s^{b})$          |                     | $207.2 (s^{b})$                  |                                           |
| Me-C(5)              | 14.4(q)                 | 1.55(s)                            | 11.5(q)                  | 1.57(s)             | 11.46, 11.49 (2 <i>q</i> )       | 1.566, 1.571 (2s)                         |
| $CH_2(1')$           | 25.5(t)                 | $2.52 (m^e)$                       | 25.6(t)                  | 2.51(m)             | 25.6 ( <i>t</i> )                | 2.51 ( <i>m</i> )                         |
| - 2( )               |                         | 2.69                               |                          | 2.69                |                                  | 2.68                                      |
|                      |                         | (dd, J = 8.4, 15.5)                |                          | (dd, J = 8.9, 15.0) |                                  | (dd, J = 9.0, 14.7)                       |
| H-C(2')              | 118.9 (d)               | 5.11 ( <i>m</i> )                  | 119.7 (d)                | 5.21 ( <i>m</i> )   | 119.7 (d)                        | 5.21 (m <sup>e</sup> ))                   |
| C(3')                | 135.2 (s)               | ~ /                                | 135.2 (s)                | ~ /                 | 135.2 (s <sup>b</sup> ))         | < <i>//</i>                               |
| Me(4')               | 26.0(q)                 | 1.73 (br. s)                       | 25.9(q)                  | 1.73 (br. s)        | 25.9(q)                          | 1.73 (br. s)                              |
| Me-C(3')             | 18.0(q)                 | 1.69 (br. s)                       | 18.0(q)                  | 1.68 (br. s)        | 18.0(q)                          | 1.68 (br. s)                              |
| C(1'')               | $208.4 (s^{b})$         | × ,                                | $209.8 (s^{b})$          |                     | $209.3 (s^{b})$                  | × ,                                       |
| H-C(2'')             | 34.8 (d)                | 4.01                               | 35.0 (d)                 | 4.01                | 41.2, 41.3 (2d)                  | $3.82 - 3.95 (m^e)$                       |
| · · ·                | ( )                     | (sept., J = 6.8)                   | ~ /                      | (sept., J = 6.8)    |                                  | ( //                                      |
| Me(3") or            | $18.7 (q^{c})$          | $1.13 - 1.16 (m^e)$                | 18.6(q)                  | 1.17                | 26.5(t)                          | $1.70 - 1.77 (m^{e})$                     |
| CH <sub>2</sub> (3") | (1 //                   | < <i>//</i>                        |                          | (d, J = 6.8)        |                                  | × //                                      |
| 2(1)                 |                         |                                    |                          |                     |                                  | $1.38 - 1.46 (m^e)$                       |
| Me-C(2'')            | $18.8 (a^{c})$          | $1.13 - 1.16 (m^e)$                | 19.0(q)                  | 1.16                | 11.7, 11.8(2q)                   | $0.88 - 1.00 \ (m^{\rm e}))$              |
|                      | (4 ))                   |                                    |                          | (d, J = 6.8)        |                                  |                                           |
| Me(4")               |                         |                                    |                          |                     | 16.1, 16.5 (2 <i>q</i> )         | 1.14/1.15<br>( <i>d</i> , <i>J</i> = 6.9) |
| C(1''')              | $72.0(s^{d})$           |                                    | 74.2(s)                  |                     | 74.2(s)                          |                                           |
| Me(2''')             | 29.3(q)                 | 1.45(s)                            | 26.4(q)                  | 1.21(s)             | 26.4(q)                          | 1.20 (br. s)                              |
| Me - C(1''')         | ( <b>1</b> /            | 1.17 (s)                           | 29.5(q)                  | 1.23(s)             | 29.3(q)                          | 1.23(s)                                   |
| OH                   |                         | 18.89 (s)                          | (1)                      | 18.80(s)            | (1)                              | 18.80, 18.83 (2s)                         |

Table 1. <sup>13</sup>C- and <sup>1</sup>H-NMR Data of the Major Tautomers  $1-3^{a}$ ).  $\delta$  in ppm, J in Hz.

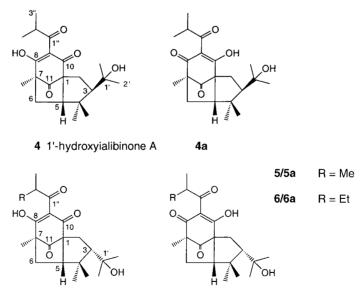
<sup>a</sup>) Spectra measured at 500 (<sup>1</sup>H) or 75 MHz (<sup>13</sup>C), 295 K, in CDCl<sub>3</sub>. <sup>b</sup>) Signals derived from HMBC experiments. <sup>c</sup>) <sup>d</sup>) Values may be interchanged between minor and major tautomer. <sup>e</sup>) Multiplicity and/or coupling constant not determined due to overlapping signals. <sup>f</sup>) Some signals are broadened or even doubled because of epimerization at C(2").

and CH<sub>2</sub>(7), confirmed by DQF-COSY (<sup>1</sup>H, <sup>1</sup>H *J*-correlated 2D) cross-peaks, is part of the five-membered ring. Its position is unambiguously determined by many HMBC cross-peaks. Additionally, the five-membered ring is substituted at C(6) by a 1-hydroxy-1-methylethyl group ( $\delta$ (C) 72.0 (C(1''')), 29.3 (C(2''')), and 29.4 (Me-C(1''')). The acyl side chain at C(3) is identified as a 2-methylpropanoyl moiety.

The tautomer mixture 2/2a is almost identical to 1/1a, possessing an identical molecular formula (deduced from the  $[M + Na]^+$  ion at m/z 385.1982 in HR-MALDI) and similar correlations in the DQF-COSY, HSQC, and HMBC plots. The minor chemical-shift differences for some resonances are due to a change in the relative configuration of the two compounds (*Tables 1* and 2). The exact determination of the relative configuration is based upon the following arguments: the rigid bicyclic ring

|                                   | <u>1a</u>                |                        | 2a                       |                                  | <b>3a</b> <sup>f</sup> )      |                                    |
|-----------------------------------|--------------------------|------------------------|--------------------------|----------------------------------|-------------------------------|------------------------------------|
|                                   | $\delta(C)$              | δ(H)                   | $\delta(C)$              | δ(H)                             | $\delta(C)$                   | $\delta(H)$                        |
| C(1)                              | 61.2 (s <sup>b</sup> ))  |                        | 61.3 (s)                 |                                  | 61.4 (s <sup>b</sup> ))       |                                    |
| C(2)                              | $201.2 (s^b)$            |                        | 202.1 (s <sup>b</sup> )) |                                  | $202.2 (s^{b}))$              |                                    |
| C(3)                              | 111.3 (s <sup>b</sup> )) |                        | 107.4 (s)                |                                  | $107.8 (s^{b}))$              |                                    |
| C(4)                              | 193.8 (s <sup>b</sup> )) |                        | 193.6 (s <sup>b</sup> )) |                                  | 193.8 (s <sup>b</sup> ))      |                                    |
| C(5)                              | $67.1 (s^{b}))$          |                        | 66.7 (s <sup>b</sup> ))  |                                  | $66.8(s^{b}))$                |                                    |
| H-C(6)                            | 52.3 (d)                 | 2.00 (t, J = 9.4)      | 48.7 ( <i>d</i> )        | 2.16 ( <i>m</i> <sup>e</sup> ))  | 48.66,<br>48.70 (2 <i>d</i> ) | 2.18 ( <i>m</i> <sup>e</sup> ))    |
| $CH_{2}(7)$                       | 31.1 (t)                 | 2.24                   | 33.4 (t)                 | $2.15 (m, 2 H)^{e}$              | 33.3, 33.4 (2 <i>t</i> )      | 2.10-2.18                          |
|                                   |                          | (br. d, J = 10.1, 2 H) |                          |                                  |                               | $(m, 2 H)^{e})$                    |
| C(8)                              | 206.3 (s <sup>b</sup> )) |                        | 207.4 (s <sup>b</sup> )) |                                  | $207.5 (s^{b}))$              |                                    |
| Me-C(5)                           | 15.4(q)                  | 1.50(s)                | 12.0(q)                  | 1.52 (s)                         | 12.0(q)                       | 1.51, 1.52 (2s)                    |
| $CH_{2}(1')$                      | 24.9 (t)                 | $2.57 (m^{e}))$        | 25.0 (t)                 | 2.56 (m)                         | 25.0 (t)                      | 2.56 (m)                           |
|                                   |                          | 2.74                   |                          | 2.73                             |                               | 2.73                               |
|                                   |                          | (dd, J = 8.3, 15.4)    |                          | (dd, J = 8.8, 14.9)              |                               | (dd, J = 7.0, 15.0)                |
| H - C(2')                         | 118.4 (d)                | 5.16 ( <i>m</i> )      | 118.9 (d)                | 5.24 ( <i>m</i> )                | 119.0 (d)                     | $5.24 (m^e))$                      |
| C(3')                             | 135.6 (s)                |                        | 135.5 (s)                |                                  | $135.5(s^b))$                 |                                    |
| Me(4')                            | 26.0(q)                  | 1.74 (br. s)           | 25.9(q)                  | 1.74 (br. s)                     | 25.9(q)                       | 1.74 (br. s)                       |
| Me-C(3')                          | 18.0(q)                  | 1.70 (br. s)           | 18.0(q)                  | 1.70 (br. s)                     | 18.0(q)                       | 1.70 (br. s)                       |
| C(1'')                            | 208.3(s)                 |                        | $209.3 (s^b))$           |                                  | $208.9(s^{b}))$               |                                    |
| H-C(2")                           | 34.7 ( <i>d</i> )        | 3.99 (sept, J = 6.7)   | 34.8 ( <i>d</i> )        | 3.99 ( <i>sept</i> , $J = 6.8$ ) | 41.0, 41.1 (2 <i>d</i> )      | $3.82 - 3.95 (m^e))$               |
| Me(3") or<br>CH <sub>2</sub> (3") | 18.7 (q <sup>c</sup> ))  | $1.13 - 1.16 (m^e))$   | 18.7 (q)                 | 1.14 $(d, J = 6.4)$              | 26.6 ( <i>t</i> )             | $1.70 - 1.77 \ (m^{e}))$           |
|                                   |                          |                        |                          |                                  |                               | $1.38 - 1.46 (m^e)$                |
| Me-C(2")                          | $18.8 (q^{c}))$          | $1.13 - 1.16 (m^e)$    | 18.9(q)                  | 1.19 (d, J = 6.8)                | 11.7, 11.8 (2q)               | $0.88 - 1.00 (m^e))$               |
| Me(5")                            |                          |                        |                          |                                  | 16.0, 16.4 (2q)               | 1.12, 1.17<br>( $2d$ , $J = 6.9$ ) |
| C(1''')                           | 72.1 (s <sup>d</sup> ))  |                        | 73.9 (s)                 |                                  | 73.9 (s <sup>b</sup> ))       |                                    |
| Me(2"")                           | 29.3(q)                  | 1.45 (s)               | 27.1(q)                  | 1.22(s)                          | 26.8(q)                       | 1.21 (br. s)                       |
| Me-C(1''')<br>OH                  | 29.5 $(q)$               | 1.15 (s)<br>18.74 (s)  | 29.5 $(q)$               | 1.23 (s)<br>18.75 (s)            | 29.3 (q)                      | 1.23 (br. s)<br>18.74, 18.77 (2s)  |

Table 2. <sup>13</sup>C- and <sup>1</sup>H-NMR Data of the Minor Tautomers  $1a - 3a^{a}$ ).  $\delta$  in ppm, J in Hz.


<sup>a</sup>) Spectra measured at 500 (<sup>1</sup>H) or 75 MHz (<sup>13</sup>C), 295 K, in CDCl<sub>3</sub>. <sup>b</sup>) Signals derived from HMBC experiments. <sup>c</sup>) <sup>d</sup>) Values may be interchanged between minor and major tautomer. <sup>c</sup>) Multiplicity and/or coupling constant not determined due to overlapping signals. <sup>f</sup>) Some signals are broadened or even doubled because of epimerization at C(2").

system determines the relative configuration at the chirality centres C(1) and C(5). The carbonyl bridge between C(1) and C(5) constrains the substituents at C(1) and C(5) to be *cis* and, hence, Me-C(5) is positioned below the plane of the five-membered ring. NOESY Experiments allow the determination of the relative configuration at the third chiral centre C(6). In **1/1a**, NOE cross-peaks between Me-C(5) and H-C(6) confirm the *endo* position of H-C(6). No corresponding NOE signal is observed in **2/2a**, and, hence, H-C(6) most probably is in *exo* position. Thus, **1/1a** and **2/2a** are epimers at C(6), with a 6-*exo*-(1-hydroxy-1-methylethyl) group in the case of **1/1a** and a 6-*endo*-(1-hydroxy-1-methylethyl) group in the case of **2/2a**.

A third substance and its tautomer, *i.e.*, **3** and **3a**, respectively, are identified by comparing the <sup>1</sup>H- and <sup>13</sup>C-NMR chemical shifts with the corresponding data from 1/1a

and 2/2a (Tables 1 and 2). An increase of the molecular weight by 14 atomic mass units to give rise to  $M^+$  at m/z 376 (DEI-MS) and to  $[M + K]^+$  at m/z 415.2090 (HR-MALDI) suggests the replacement of the 2-methylpropanovl group at C(3) by a 2methylbutanovl group. Further data obtained from HSOC (heteronuclear singlequantum coherence), HMBC, DOF-COSY, and NOESY experiments allow the identification of **3** as 4-hydroxy-6-endo-(1-hydroxy-1-methylethyl)-5-methyl-3-(2methylbutanoyl)-1-(3-methylbut-2-enyl)bicyclo[3.2.1]oct-3-ene-2,8-dione. In addition, some of the signals in the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra are broadened or even doubled. These signal doubling and chemical-shift differences are most probably caused by epimerization. However, it was not possible to determine which of the chiral C-atoms caused the epimerization by interpretation of the NMR data. But the fact that only isolates with a 2-methylbutanovl unit at C(3), and not the ones with a 2methylpropanoyl side chain show epimerization, strongly suggests that the introduction of the chirality centre C(2'') is responsible. Furthermore, for OH-C(4), four clearly separated <sup>1</sup>H-NMR signals at  $\delta(H)$  18.83 and 18.80 (3), and  $\delta(H)$  18.77 and 18.74 (3a) in a ratio of ca. 1.6:1.7:1.0:1.0 are displayed for the tautomer mixture 3/3a. These facts suggest that the compound exists not only in two tautomeric forms in a ratio of ca. 1.6:1 (3/3a), but is also an inseparable mixture of epimers at C(2'') in a ratio of *ca.* 1:1.

The tautomer mixture 4/4a shows a molecular ion  $M^+$  at m/z 362 (DEI-MS). This molecular mass in combination with <sup>1</sup>H- and <sup>13</sup>C-NMR spectra (including DEPT135/90) (*Tables 3* and 4) establish the molecular formula as  $C_{21}H_{30}O_5$ . In contrast to all other isolated compounds, the HR-MALDI-MS displays no  $[M + Na]^+$  peak (see *Exper. Part*). Once again, doubled <sup>1</sup>H- and <sup>13</sup>C-NMR patterns in a ratio of *ca.* 2:1, and the absence of further molecular-ion peaks in the MS establish the presence of two enol tautomers, with 4 being the predominant one. Interpretation of the 1D and 2D spectra



5/6 1'-hydroxyialibinone B/D 5a/6a

|                      | 4           |                       | 5           |                         | <b>6</b> <sup>d</sup> )          |                                |
|----------------------|-------------|-----------------------|-------------|-------------------------|----------------------------------|--------------------------------|
|                      | $\delta(C)$ | δ(H)                  | $\delta(C)$ | $\delta(H)$             | $\delta(C)$                      | $\delta(H)$                    |
| C(1)                 | 71.4 (s)    |                       | 71.4 (s)    |                         | 71.5 (s)                         |                                |
| $CH_{2}(2)$          | 23.6 (t)    | 2.27                  | 22.7 (t)    | 2.13 $(t, J = 13.1)$    | 22.7 (t)                         | 2.13 (br. $t, J = 13.0$ )      |
|                      |             | (dd, J = 6.4, 13.5)   |             |                         |                                  |                                |
|                      |             | 2.46                  |             | 2.63                    |                                  | 2.63                           |
|                      |             | (dd, J = 11.3, 13.5)  |             | (dd, J = 7.5, 13.4)     |                                  | (dd, J = 7.4, 13.3)            |
| H-C(3)               | 57.9 (d)    | 1.55                  | 60.9(d)     | 1.85                    | 60.8, 60.9 (2d)                  | $1.86 \ (m^{\rm c}))$          |
|                      |             | (dd, J = 6.4, 11.3)   |             | (dd, J = 7.5, 12.8)     |                                  |                                |
| C(4)                 | 43.4 (s)    |                       | 44.8 (s)    |                         | 44.8 (s)                         |                                |
| H-C(5)               | 57.0 (d)    | 2.35                  | 56.3 (d)    | 2.23 (m <sup>c</sup> )) | 56.3, 56.4 (2d)                  | $2.23 (m^{c}))$                |
|                      |             | (br. t, J = 9.1, 9.7) |             |                         |                                  |                                |
| $CH_{2}(6)$          | 34.2 (t)    | 1.75                  | 32.0 (t)    | 1.89                    | 32.1 (t)                         | $1.89 \ (m^{c}))$              |
|                      |             | (dd, J = 8.9, 13.2)   |             | (dd, J = 4.8, 13.3)     |                                  |                                |
|                      |             | 2.21                  |             | $2.18 (m^{c}))$         |                                  | 2.18(t, J = 13.0)              |
|                      |             | (dd, J = 9.9, 13.2)   |             |                         |                                  |                                |
| C(7)                 | 61.4 (s)    |                       | 61.6 (s)    |                         | 61.7 (s)                         |                                |
| C(8)                 | 201.7 (s)   |                       | 201.9 (s)   |                         | $202.0 (s^{e}))$                 |                                |
| C(9)                 | 109.4 (s)   |                       | 107.9 (s)   |                         | $108.3 (s^{e}))$                 |                                |
| C(10)                | 191.5 (s)   |                       | 191.3 (s)   |                         | 191.3 (s <sup>e</sup> ))         |                                |
| C(11)                | 206.3 (s)   |                       | 206.9(s)    |                         | $207.0 (s^{e}))$                 |                                |
| $Me_a - C(4)$        | 26.5(q)     | 1.08(s)               | 17.2(q)     | 0.83(s)                 | 17.2(q)                          | 0.83(s)                        |
| $Me_{\beta}-C(4)$    | 26.6(q)     | 1.10 (s)              | 29.0(q)     | 1.08(s)                 | 29.0(q)                          | 1.076, 1.081 (2s)              |
| Me-C(7)              | 12.3(q)     | 1.40 (s)              | 12.3(q)     | 1.39 (s)                | 12.3(q)                          | 1.385, 1.389 (2s)              |
| C(1')                | 73.1 (s)    |                       | 72.8(s)     |                         | 72.9 (s)                         |                                |
| Me(2')               |             | $1.34 (s^{b}))$       | 30.3 (q)    | 1.36 (s)                | 30.3(q)                          | 1.37 (s)                       |
| Me-C(1')             | 30.9 (q)    | $1.34~(s^{b}))$       | 31.3 (q)    | 1.34 (s)                | 31.3 (q)                         | 1.34(s)                        |
| C(1")                | 208.7 (s)   |                       | 209.6(s)    |                         | 209.2, 209.3 (2s <sup>e</sup> )) |                                |
| H-C(2")              | 34.9 (d)    | 4.02                  | 35.0(d)     | 4.05                    | 41.2, 41.3 (2 <i>d</i> )         | $3.94 \ (m, J = 6.8)^{\circ})$ |
|                      |             | (sept., J = 6.8)      |             | (sept., J = 6.8)        |                                  |                                |
| Me(3") or            | 18.5(q)     | 1.159 (d, J = 6.8)    | 18.6(q)     | 1.19 (d, J = 6.8)       | 26.3 ( <i>t</i> )                | $1.46 \ (m^{c}))$              |
| CH <sub>2</sub> (3") |             |                       |             |                         |                                  |                                |
|                      |             |                       |             |                         |                                  | $1.76 (m^{c}))$                |
| Me-C(2'')            | 19.0(q)     | 1.156 (d, J = 6.8)    | 19.0(q)     | 1.15 (d, J = 6.8)       | 11.8(q)                          | 0.95(t, J = 7.4)               |
| Me(4")               |             |                       |             |                         | 16.2, 16.6 (2q)                  | 1.132, 1.174                   |
|                      |             |                       |             |                         |                                  | (2d, J = 6.8)                  |
| OH                   |             | 18.80 (s)             |             | 18.86 (s)               |                                  | 18.89, 18.86 (2s)              |

Table 3. <sup>13</sup>C- and <sup>1</sup>H-NMR Data of the Major Tautomers  $4-6^{a}$ ).  $\delta$  in ppm, J in Hz.

<sup>a</sup>) Spectra measured at 500 (<sup>1</sup>H) or 75 MHz (<sup>13</sup>C), 295 K, in CDCl<sub>3</sub>. <sup>b</sup>) Values may be interchanged between minor and major tautomer. <sup>c</sup>) Multiplicity and/or coupling constant not determined due to overlapping signals. <sup>d</sup>) Some signals are broadened or even doubled because of epimerization at C(2"). <sup>e</sup>) Signals derived from HMBC experiments.

of this compound and comparison with the spectral data of the previously isolated ialibinones A - E show unambiguously that 4/4a is a derivative of ialibinone A. The only difference is the replacement of the 1-methylvinyl group at C(3) with a 1-hydroxy-1-methylethyl group.

A HSQC ( $^{13}C$ ,  $^{1}H$   $^{1}J$  correlated 2D) experiment with **4** was utilized to assign the protons to their attached Catoms. The substituent at C(3) is identified by signals for a quaternary C(1') at  $\delta$ (C) 73.1 and two tertiary Me groups Me(2') and Me-C(1') at  $\delta$ (C) 30.6 and 30.9 ppm. The chemical-shift value of the quaternary C(1') is explained by an OH group located at C(1'). The position of this 1-hydroxy-1-methylethyl group at C(3) is

|                      | <u>4a</u>   |                      | 5a          |                      | <b>6a</b> <sup>c</sup> ) |                       |
|----------------------|-------------|----------------------|-------------|----------------------|--------------------------|-----------------------|
|                      | $\delta(C)$ | $\delta(H)$          | $\delta(C)$ | $\delta(H)$          | $\delta(C)$              | $\delta(H)$           |
| C(1)                 | 67.1 (s)    |                      | 67.4 (s)    |                      | 67.5 (s <sup>d</sup> ))  |                       |
| $CH_2(2)$            | 22.8(t)     | 2.32                 | 22.0(t)     | 2.25 $(t, J = 13.5)$ | 22.1 (t)                 | 2.24, 2.25            |
|                      |             | (dd, J = 6.3, 13.5)  |             |                      |                          | (2  br.  t, J = 13.6) |
|                      |             | 2.49                 |             | 2.61                 |                          | 2.62                  |
|                      |             | (dd, J = 11.4, 13.5) |             | (dd, J = 7.9, 13.7)  |                          | (dd, J = 7.5, 13.6)   |
| H-C(3)               | 57.8 (d)    | 1.56                 | 61.0(d)     | 1.92                 | 61.0(d)                  | 1.92                  |
| ~ /                  | ( )         | (dd, J = 6.3, 11.4)  |             | (dd, J = 7.8, 12.7)  |                          | (dd, J = 7.7, 12.7)   |
| C(4)                 | 43.6(s)     |                      | 45.0(s)     |                      | 45.0(s)                  |                       |
| H-C(5)               | 59.4 (d)    | 2.42                 | 58.5(d)     | 2.38                 | 58.5(d)                  | $2.37 (m^{e})$        |
|                      | ~ /         | (dd, J = 8.5, 10.0)  | . ,         | (dd, J = 4.6, 10.4)  |                          | · · · · ·             |
| $CH_{2}(6)$          | 33.4(t)     | 1.66                 | 30.4(t)     | 1.79                 | 30.5(t)                  | $1.78 (m^{e})$        |
| 200                  | ( )         | (dd, J = 8.5, 13.3)  |             | (dd, J = 4.6, 14.2)  |                          | × //                  |
|                      |             | 2.10                 |             | 2.06                 |                          | 2.06                  |
|                      |             | (dd, J = 10.1, 13.3) |             | (dd, J = 10.4, 14.2) |                          | (dd, J = 10.5, 14.3)  |
| C(7)                 | 65.1(s)     |                      | 65.7(s)     |                      | $65.7 (s^{d})$           |                       |
| C(8)                 | 194.5 (s)   |                      | 193.5 (s)   |                      | 193.7 (s <sup>d</sup> )) |                       |
| C(9)                 | 109.3 (s)   |                      | 107.8 (s)   |                      | $108.3(s^{d}))$          |                       |
| C(10)                | 200.4(s)    |                      | 200.2(s)    |                      | $200.3 (s^{d}))$         |                       |
| C(11)                | 206.8 (s)   |                      | 207.4(s)    |                      | $207.5(s^{d}))$          |                       |
| $Me_a - C(4)$        | 26.5(q)     | 1.07(s)              | 16.7(q)     | 0.81(s)              | 16.7(q)                  | 0.81(s)               |
| $Me_{\beta} - C(4)$  | 26.6(q)     | · · /                | 29.0(q)     | · · ·                | 29.0(q)                  | 1.09 (br. s)          |
| Me-C(7)              | 13.1(q)     | · · /                | 13.0(q)     |                      | 13.0(q)                  | 1.325, 1.323 (2s)     |
| C(1')                | 73.0(s)     |                      | 72.8(s)     |                      | 72.9(s)                  | , , ,                 |
| Me(2')               | 30.6(q)     | $1.35(s^{b}))$       | 30.3(q)     | 1.38(s)              | 30.3(q)                  | 1.38(s)               |
| Me-C(1')             | 30.9(q)     | $1.35(s^{b}))$       | 31.2(q)     | 1.35(s)              | 31.2(q)                  | 1.35 (s)              |
| C(1")                | 207.5(s)    | × //                 | 209.1(s)    |                      | $208.7 (s^{d})$          |                       |
| H - C(2'')           | 34.2 (d)    | 3.94                 | 34.7 (d)    | 4.03                 | 41.0(d)                  | $3.91 (m^{e})$        |
| × /                  | ( )         | (sept., J = 6.8)     | . ,         | (sept., J = 6.8)     |                          | · · · · ·             |
| Me(3") or            | 18.6(q)     | 1.13                 | 18.8(q)     | 1.19(d, J = 6.8)     | 26.6(t)                  | $1.41 \ (m^{\rm e}))$ |
| CH <sub>2</sub> (3") | (1)         | (d, J = 6.8)         | (1)         |                      |                          | × //                  |
| - / /                |             |                      |             |                      |                          | $1.72 (m^{e}))$       |
| Me-C(2'')            | 19.2 (q)    | 1.21 (d, J = 6.8)    | 18.8(q)     | 1.14(d, J = 6.8)     | 11.7(q)                  | 0.903, 0.907          |
| . /                  | (1)         |                      | (1)         |                      |                          | (2t, J = 7.4)         |
| Me(4")               |             |                      |             |                      | 16.2, 16.3 (2q)          |                       |
| × /                  |             |                      |             |                      | / (1)                    | (2d, J = 6.8)         |
| ОН                   |             | 18.42(s)             |             | 18.81(s)             |                          | 18.83, 18.00 (2s)     |

Table 4. <sup>13</sup>C- and <sup>1</sup>H-NMR Spectral Data of the Minor Tautomers  $4a-6a^{a}$ )).  $\delta$  in ppm, J in Hz.

<sup>a</sup>) Spectra measured at 500 (<sup>1</sup>H) or 75 MHz (<sup>13</sup>C), 295 K, in CDCl<sub>3</sub>. <sup>b</sup>) Values may be interchanged between minor and major tautomer. <sup>c</sup>) Some signals are broadened or even doubled because of epimerization at C(2"). <sup>d</sup>) Signals derived from HMBC experiments. <sup>e</sup>) Multiplicity and/or coupling constant not determined due to overlapping signals.

verified by a HMBC experiment, showing correlations between C(3) and Me(2') and Me-C(1'), on the one hand, and between C(1') and H-C(3), on the other hand. Similar arguments were used for the structure elucidation of the minor tautomer **4a**.

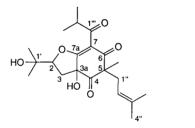
The spectral data of the isolated viscous oils 5/5a and 6/6a are very similar to those of 4/4a. Their FAB-MS (positive mode) shows pseudomolecular-ion peaks  $[M + H]^+$  at m/z 363 (5/5a) and 377 (6/6a). HR-MALDI displays  $[M + Na]^+$  ions at m/z 385.1982

(calc. 385.1991) and m/z 399.2137 (calc. 399.2148), respectively, which are in agreement with the molecular formulae  $C_{21}H_{30}O_5$  and  $C_{22}H_{32}O_5$ . Again, interpretation of the NMR data (*Tables 3* and 4) and comparison with the ialibinones reveal their close relationship in the covalent structure. The data allow the conclusion that 4/4a and 5/5a are the C(3) epimers of 8-hydroxy-3-(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2-methylpropanoyl)-5 $\beta$ H-tricyclo[5.3.1.0<sup>1,5</sup>]undec-8-ene-10,11-dione, with a 3 $\beta$ -(1-hydroxy-1-methylethyl) group in 4/4a and a 3 $\alpha$ -(1-hydroxy-1-methylethyl) group in 5/5a. Considering the close relationship to the ialibinones A and B, the new metabolites are named 1'-hydroxyialibinones A (4/4a) and B (5/5a), respectively.

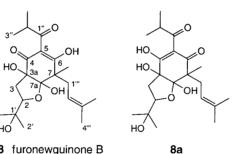
The tautomer mixture **5/5a** has the same molecular formula  $C_{21}H_{30}O_5$  as **4/4a**, as established by spectral data from FAB-MS and <sup>1</sup>H- and <sup>13</sup>C-NMR and DEPT135 experiments. Moreover, **5/5a** displays similar HSQC, HMBC, and DQF-COSY cross-peak patterns suggesting an almost identical covalent structure. The only noticeable difference is a significant upfield shift of  $Me_a-C(4)$  in the <sup>13</sup>C-NMR spectrum from  $\delta(C)$  26.5/ 26.5 ppm (**4/4a**) to 17.2/16.7 ppm (**5/5a**). A similar effect is observed for the <sup>1</sup>H-NMR shifts of  $Me_a-C(4)$ changing from  $\delta(H)$  1.08/1.07 (**4/4a**) to 0.83/0.81 (**5/5a**). A correlation between the position of the substituent at C(3) and the shift of the NMR signals of  $Me_a-C(4)$  has already been shown for the ialibinones. Substitution in  $\alpha$ position (ialibinones B and D) led to a remarkable upfield shift in comparison to the  $\beta$ -substituted ialibinones A and C.

In analogy to the ialibinones B and D, the DQF-COSY and HMBC data readily reveal that the 2-methylpropanoyl group at C(9) is replaced by a 2-methylbutanoyl unit in compounds **6/6a**. This finding is further supported by a difference of 14 atomic mass units for **6/6a** compared to compound **5/5a**. As already described for **3/3a**, some of the signals in the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra are broadened or even doubled, which in all probability is caused by epimerization at C(2"). This doubling effect is particularly remarkable in the signals of OH–C(8): for the tautomer mixture **6/6a**, four clearly separated <sup>1</sup>H-NMR signals at  $\delta$ (H) 18.89 and 18.86 (**6**) and  $\delta$ (H) 18.83 and 18.80 (**6a**) in a ratio of 1.3 : 2.4 : 1.9 : 1.0 are displayed. These data suggest that the compound exists not only in two tautomeric forms in a ratio of *ca*. 1.3 : 1 (**6/6a**), but forms again an inseparable mixture of epimers at C(2") in a ratio of *ca*. 1 : 2. Except for the replacement of the 1-methylvinyl group at C(3) by a 1-hydroxy-1-methylethyl group, compound **6/6a** is identical to ialibinone D, and, therefore, we suggest the name 1'-hydroxyialibinone D.

We could safely exclude that the three 1'-hydroxyialibinones are artefacts of isolation procedures, because the previously (without further precaution) isolated ialibinones A - E showed no degradation, even after several months of storage at 4° and occasional exposure to room temperature and air. Until now, the stability of the 1'-hydroxyialibinones seems to be comparable to the stability of the ialibinones.


Finally, the most polar component **7** was isolated by reversed-phase HPLC. Within a few days, the isolate decomposed in CDCl<sub>3</sub> quantitatively to compound **8** and its tautomer **8a**. However, it was possible to measure a <sup>1</sup>H-NMR of pure **7**, as well as <sup>1</sup>H, <sup>13</sup>C, DQF-COSY, HSQC, and HMBC experiments of only partially decomposed **7**. Furthermore, all 1D and 2D NMR experiments were repeated after total conversion from **7** to **8/8a**. This allowed – once the structure **8/8a** was determined – the assignment of the NMR signals of the mixture to the corresponding compounds and thus to establish the constitution of **7**.

The molecular formula of 8/8a,  $C_{21}H_{32}O_7$ , was derived from FAB- and HR-MALDI-MS, as well as from <sup>1</sup>H- and <sup>13</sup>C-NMR spectroscopy (*Table 5*), including


HMBC experiments. Comparison of the NMR data of an oxidation product of hyperform [5] and the benzovlphloroglucinol derivative sampsonione L [6] with 8confirmed the proposed structure. The tautomer mixture 8/8a has the four chiral centres C(2), C(3a), C(7), and C(7a); however, it was not possible to determine the relative configuration at these positions by a NOESY experiment. This was due to the low proton density and the lack of suitable nonexchangeable protons.

<sup>1</sup>H-and <sup>13</sup>C-NMR Data of **8** indicate the presence of a prenvl residue:  $\delta(C)$  29.3 (CH<sub>2</sub>(1<sup>'''</sup>)), 121.0 (H-C(2'')), 135.2 (C(3'')), 26.2 (Me(4'')), and 18.0 (Me-C(3'')). Furthermore, signals common for a 2methylpropanoyl side chain ( $\delta$ (C) 207.0 (C(1'')), 34.5 (H–C(2'')), 19.2 (Me(3'')), and 19.3 (Me–C(2'')), a keto group ( $\delta(C)$  195.5 (C(4))), and a quaternary C(6) ( $\delta(C)$  204.9) substituted by an enol OH group can be identified. Signals for another Me group, Me - C(7) ( $\delta(C)$  21.4), and four additional quaternary C-atoms (C(7), C(3a), C(7a), and C(5) at  $\delta(C)$  51.3, 83.2, 102.2, and 106.6, resp.) are identified. These data exhibit enough characteristic features to recognize that 8 presents a tautomeric acylphloroglucinol derivative substituted with a prenyl group. Due to the high number of quaternary C-atoms, HMBCs are the only valuable tool to connect these basic fragments and to establish the covalent structure. Likewise, the position of the OH groups at C(3a), C(6), and C(7a) is determined by HMBCs between the OH proton and the adjacent C-atoms.

In addition to the partial structure for 8 described above, the presence of a H–C(2) at  $\delta$ (C) 82.9 showing COSY cross-peaks with  $CH_2(3)$  is identified. HMBCs between C(2) and Me(2')/Me - C(1'), between C(1') and  $H-C(2)/CH_2(3)$ , as well as between C(1') and Me(2')/Me-C(1') confirm the substitution of C(2) by the dimethylated C(1'). Further HMBCs allow the determination of the position of  $CH_2(3)$  at C(3a). Considering the chemical shifts and the molecular formula obtained by FAB- and HR-MALDI-MS, C(2) and C(1') are Osubstituted, one with a free OH group, the other most probably being part of an ether bridge to C(7a), participating either in a five- or six-membered ring. An HMBC between C(7a) and H - C(2) strongly indicates an ether bridge between C(2) and C(7a), thereby forming a tetrahydrofuran ring. Consequently, C(1') has to be substituted by the free OH group. The signal of this fourth free OH function is too broad to show any HMBC cross-peaks. Hence, the position of this OH group is verified by measurement of the deuterium-isotope shift.



7 furonewquinone A



8 furonewquinone B

Main HMBCs of 8: C(2)/CH<sub>3</sub>(2'), CH<sub>3</sub>-C(1') C(3)/H-C(2) C(3a)/CH<sub>2</sub>(3), OH-C(3a), OH-C(7a)  $C(4)/CH_2(3), OH-C(3a)$ C(5)/OH-C(6) C(6)/OH-C(6), CH<sub>2</sub>-C(7), CH<sub>2</sub>(1") C(7)/CH<sub>3</sub>-C(7), CH<sub>2</sub>(1"), OH-C(7a) C(7a)/H-C(2), CH<sub>2</sub>(3), OH-C(3a), CH<sub>3</sub>-C(7), CH<sub>2</sub>(1"), OH-C(7a)  $C(1')/CH_3(2'), CH_3-C(1'), H-C(2), CH_2(3)$ C(1")/H-C(2"), CH<sub>3</sub>(3"), CH<sub>3</sub>-C(2"), OH-C(6) C(2")/CH<sub>3</sub>(3"), CH<sub>3</sub>-C(2"), OH-C(6) CH3-C(7)/CH2(1") C(2<sup>i</sup>")/CH<sub>3</sub>(4"), CH<sub>3</sub>-C(3") C(3")/CH<sub>2</sub>(1"), CH<sub>3</sub>(4"), CH<sub>3</sub>-C(3")

|                        | 7                                      |                                             | 8                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8a                       |                                                |
|------------------------|----------------------------------------|---------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------|
|                        | $\delta(C)$                            | $\delta(H)$                                 | $\delta(C)$             | $\delta(H)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\delta(C)$              | $\delta(H)$                                    |
| H-C(2)                 | 92.3 (d)                               | 4.81 (t, J = 7.8)                           | 82.9 (d)                | 3.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.2(d)                  | 3.65                                           |
|                        |                                        |                                             |                         | (dd, J = 7.3, 9.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | (dd, J = 6.6, 10.2)                            |
| CH <sub>2</sub> (3)    | 32.7 (t)                               | 2.30                                        | 38.4 (t)                | 2.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.7 (t)                 | 2.44                                           |
|                        |                                        | (d, J = 7.8, 2  H)                          |                         | (dd, J = 7.3, 13.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | (dd, J = 10.2, 12.8)                           |
|                        |                                        |                                             |                         | 2.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 2.71                                           |
|                        |                                        |                                             |                         | (dd, J = 9.7, 13.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | (dd, J = 6.6, 12.8)                            |
| C(3a)                  | $80.0~(s^{b}))$                        |                                             | 83.2 (s)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80.3 (s)                 |                                                |
| C(4)                   | 198.4 (s <sup>b</sup> ) <sup>c</sup> ) | )                                           | 195.5 (s)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190.8 (s)                |                                                |
| C(5)                   | 57.9 (s)                               |                                             | 106.6(s)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $107.9(s^{b})$           |                                                |
| C(6)                   | $204.7 (s^{b})^{c}$                    | )                                           | 204.9 (s)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $196.7 (s^b)$            |                                                |
| C(7)                   | $-(s^{d}))$                            |                                             | 51.3 (s)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.4 (s)                 |                                                |
| C(7a)                  | 173.0 (s <sup>b</sup> ))               |                                             | 102.2(s)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.2(s)                 |                                                |
| Me-C(5) or             | 24.5(q)                                | 1.50(s)                                     | 21.4(q)                 | 1.26(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.7(q)                  | 1.34(s)                                        |
| Me-C(7)                |                                        | . ,                                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
| C(1')                  | $70.6~(s^{\rm b}))$                    |                                             | 70.3 (s)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 70.3(s)                  |                                                |
| Me(2')                 | 23.8(q)                                | 1.20(s)                                     | 24.3(q)                 | 1.04(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 24.5(q)                  | 1.06(s)                                        |
| Me - C(1')             | 26.5(q)                                | 1.35(s)                                     | 27.3(q)                 | 1.24(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.3(q)                  | 1.24 (br. s)                                   |
| $CH_2(1'')$ or         | 37.4(t)                                | 2.45                                        | $207.0 (s^{b})$         | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 211.3(s)                 |                                                |
| C(1'')                 |                                        | (dd, J = 8.4, 13.7)                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
|                        |                                        | 2.67                                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
|                        |                                        | (dd, J = 7.0, 13.7)                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
| H - C(2'')             | 118.2(d)                               | 4.73                                        | 34.5(d)                 | 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36.1 (d)                 | 3.90                                           |
| ~ /                    | ( )                                    | (br. $t, J = 8.2, 7.0$ )                    | · · ·                   | (sept., J = 6.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | (sept., J = 6.8)                               |
| C(3") or               | $135.8 (s^{b})$                        | (                                           | 19.2 (q)                | 1.14 (d, J = 6.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.9(q)                  | 1.10 (d, J = 6.8)                              |
| Me(3")                 | ( //                                   |                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
| Me(4") or              | 25.9(q)                                | 1.56 (br. s)                                | 19.3(q)                 | 1.25 (d, J = 6.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.9(q)                  | 1.20 (d, J = 6.8)                              |
| Me-C(2'')              |                                        |                                             |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
| Me-C(3'')              | 17.7(q)                                | 1.54 (br. s)                                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                |
| C(1''') or             | 204.9(s)                               |                                             | 29.3 (t)                | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.9(t)                  | $2.49 (m^{e})$                                 |
| CH <sub>2</sub> (1''') |                                        |                                             |                         | (br. dd, J = 6.0, 14.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( )                      |                                                |
|                        |                                        |                                             |                         | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 2.86                                           |
|                        |                                        |                                             |                         | (dd, J = 9.4, 14.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | (dd, J = 10.8, 14.8)                           |
| H-C(2"')               | 40.2(d)                                | 3.04                                        | 121.0(d)                | $(1.1., 1^{\circ}, $ | 121.3(d)                 | $(1.1., 1^{\circ})$<br>5.54 (m <sup>e</sup> )) |
| 11 0(2)                | 10.2 (11)                              | (sept., J = 6.9)                            | 121.0 (u)               | 5.52 (m ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.0 (u)                | 5.51 (117))                                    |
| Me(3") or              | 17.6(q)                                | $(0.0 p m, 0^{-0.00})$<br>1.13 (d, J = 6.9) | 135.2 (s <sup>b</sup> ) | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 137.4 (s <sup>b</sup> )) |                                                |
| C(3''')                | 17.0 (4)                               | (u, v = 0.5)                                | 100.2 (5 )              | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.1 (5 ))              |                                                |
| Me - C(2''') or        | r 18.0 $(a)$                           | 1.07 (d, J = 6.9)                           | 26.2(q)                 | 1.76 (br. s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.2(q)                  | 1.79 (br. s)                                   |
| Me(4''')               | 10.0 (9)                               | 1.07 (u, v = 0.7)                           | 20.2 (9)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.2 (9)                 |                                                |
| Me(-C(3'''))           |                                        |                                             | 18.0(q)                 | 1.74 (br. s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.3(q)                  | 1.79 (br. s)                                   |
| OH-C(3a)               |                                        |                                             | 10.0 (9)                | 3.65 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.5(q)                  | 3.31 (s)                                       |
| OH-C(3a)<br>OH-C(4)    |                                        |                                             |                         | 5.05 (S)<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | 18.32(s)                                       |
| OH-C(4)<br>OH-C(6)     |                                        |                                             |                         | -18.68(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | -                                              |
| OH-C(0)<br>OH-C(7a)    |                                        |                                             |                         | 4.59 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | -4.95(s)                                       |
| OII = O(7a)            |                                        |                                             |                         | (0) (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          | (s) (c)                                        |

Table 5. <sup>13</sup>C- and <sup>1</sup>H-NMR Data of **7** and **8/8a**<sup>a</sup>).  $\delta$  in ppm, J in Hz.

<sup>a</sup>) Spectra measured at 300 (<sup>1</sup>H of **7**), 500 (<sup>1</sup>H of **8/8a**), or 75 MHz (<sup>13</sup>C), 295 K, in CDCl<sub>3</sub>. <sup>b</sup>) Signals derived from HMBC experiments. <sup>c</sup>) Values may be interchanged. <sup>d</sup>) Chemical shift not determined due to low amount (no signal observed in <sup>13</sup>C experiment) and no long-range correlations, which would allow an indirect determination. <sup>c</sup>) Multiplicity and/or coupling constant not determined due to overlapping signals.

Addition of a drop of D<sub>2</sub>O to the CDCl<sub>3</sub> solution induces a substantial upfield shift (-0.1 ppm) of C(1'), compared to the values obtained in pure  $CDCl_3$ , thereby confirming the substitution of C(1') with a free OH group

The structure of 7 was proposed based upon the results of 8/8a. The <sup>1</sup>H-NMR spectrum of 7 shows no signals in the region of 18 to 20 ppm, and the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra contain no doubled peaks (*Table 5*). These facts strongly suggest that the ketoenol equilibrium of the  $\beta$ -dicarbonyl system is blocked by formation of an enol ether. Apart from the described difference, the <sup>1</sup>H- and <sup>13</sup>C-NMR spectra of **7** are highly similar to those of 8/8a. COSY and HMBC experiments clearly define that C(5) is flanked by two keto groups and is still substituted by a Me and a prenyl side chain, thus the remaining oxidized prenyl residue at C(3a) forms a furan ring with an O-atom at C(7a). Although all spectral data confirm that the structure of 7 is indeed correct, rapid decomposition precluded a detailed analysis by 2D NMR and MS. However, the similarity of the compounds 7 and 8/8a indicates that 8 is formed from 7 by a oxidative rearrangement reaction and, hence, 7 presents a likely precursor of 8.

The isolates 1/1a to 6/6a and the decomposition product 8/8a were tested for their antibacterial potential against B. cereus, M. luteus, and S. epidermidis, as well as for their cytotoxic potential against a KB cell line (*Table 6*). The 1'-hydroxyialibinones 4/4a, 5/5a, and 6/6a, and the other tested compounds show identical or slightly reduced antibacterial activity compared with the ialibinones [3]. The cytotoxic activity is rather weak, compared with other phloroglucinol derivatives previously isolated from H. papuanum [4]. The ialibinones A, B, and D displayed  $IC_{50}$  values of  $8.0 \pm 2.1, 7.3 \pm 1.9$ , and  $6.6 \pm 1.9 \,\mu$ g/ml, respectively, compared to  $25.3 \pm 1.4$ , >40, and  $32.5 \pm 3.2 \,\mu$ g/ml of the corresponding 1'-hydroxyialibinones 4/4a, 5/5a, and 6/6a, respectively. Hence, the hydroxylation of the ialibinones reduces the cytotoxicity remarkably.

Together with the stronger antibacterial activity of the previously isolated compounds, the activities reported here suggest that the aerial parts of this plant may have a beneficial effect on sores and, therefore, justifies their traditional use as a remedy for wounds.

|                 | Minimum inhibit<br>( <i>MIC</i> ) [µg/ml] ii | ion concentration              | Cytotoxicity against KB cells<br>(ATCC CCL 17) ( <i>IC</i> <sub>50</sub> [µg/m. |                    |  |
|-----------------|----------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|--------------------|--|
|                 | <i>B. cereus</i> (ATCC 10702)                | S. epidermidis<br>(ATCC 12228) | M. luteus<br>(ATCC 9341)                                                        |                    |  |
| 1/1a            | 128                                          | 64                             | 64                                                                              | $20.7 \pm 3.5$     |  |
| 2/2a            | 64                                           | 64                             | 64                                                                              | $17.9 \pm 0.3$     |  |
| 3/3a            | 64                                           | 32                             | 32                                                                              | $12.4\pm0.75$      |  |
| 4/4a            | 128                                          | 64                             | 64                                                                              | $25.3 \pm 1.4$     |  |
| 5/5a            | 128                                          | 128                            | 64                                                                              | >40                |  |
| 6/6a            | 128                                          | 64                             | 64                                                                              | $32.5 \pm 3.2$     |  |
| 8/8a            | - <sup>a</sup> )                             | 128                            | 128                                                                             | >40                |  |
| Chloramphenicol | 2                                            | 4                              | 2                                                                               |                    |  |
| Podophyllotoxin |                                              |                                |                                                                                 | $0.006 \pm 0.0003$ |  |

Table 6. Biological Activities of the Isolated Compounds

3390

## **Experimental Part**

General. All solvents were HPLC grade. High-speed counter-current chromatography (HSCCC): Kromaton II from S.E.A.B. Company (F-Villejuif) with an anal. (75 ml) or prep. column (total volume 1000 ml), connected to a cooling unit (model SK 3390, RITTAL-Werk, D-Herborn), a manometric module 807, and a high-pressure pump (model 305) from Gilson (F-Villiers-le-Bel). HPLC: Merck-Hitachi L6200A-Intelligent pump connected to a Rheodyne-7125 injector, a Merck-Hitachi L-4250 UV/VIS detector, a Merck D-2500 chromato-integrator, and a Knauer HPLC column (Spherisorb S5 ODS II, 5 µm, 250 × 16 mm). Open column chromatography (open CC): column  $100 \times 4.5$  cm; silica gel (Merck), particle size  $63-200 \mu$ m. TLC: silica gel 60  $F_{254}$  precoated aluminium sheets (0.2 mm; Merck) and RP-18- $F_{254}$  precoated sheets (0.25 mm; Merck) for TLC controls. Optical rotations: Perkin-Elmer 241 polarimeter; MeOH soln. UV Spectra: Uvikon 930 spectrophotometer; MeOH soln. <sup>1</sup>H-NMR, <sup>1</sup>H,<sup>1</sup>H-COSY, 500-ms NOESY, and <sup>13</sup>C,<sup>1</sup>H-HMBC/HSQC experiments: Bruker DRX-500; at 295 K and 500.13 (1H) or 125.77 MHz (13C); for 13C-NMR and the 2D spectra (COSY, HSQC, and HMBC) of 7, Bruker AMX-300 spectrometer at 295 K and 300.13 (<sup>1</sup>H) or 75.47 MHz (<sup>13</sup>C); CDCl<sub>3</sub> soln. referenced against residual non-deuterated solvent CHCl<sub>3</sub> ( $\delta$ (H) 7.27) and CDCl<sub>3</sub> ( $\delta$ (C) 77.0). DEI-MS: micromass Tribrid double-focusing mass spectrometer; 70 eV. FAB-MS (positive mode): VG-ZAB-2SEO spectrometer; 3-nitrobenzyl alcohol (3-NOBA) as matrix. HR-MALDI-MS: IonSpec-Ultima-FTMS spectrometer; 2,5-dihydroxybenzoic acid (DHB) as matrix.

*Plant Material.* The aerial parts of *Hypericum papuanum* RIDLEY (Guttiferae) were collected north of Ialibu, Southern Highlands Province, Papua New Guinea, during September 1996. The plant was identified by *Paul Katik*, National Herbarium, Lae, PNG, and Dr. *M. M. J. van Balgooy*, Rijksherbarium, Leiden, The Netherlands. A voucher specimen is deposited in the Rijksherbarium (Leiden, The Netherlands) with the identification number ETH 96/34 27-09-96.

*Extraction and Isolation.* The detailed procedure for the extraction of the plant and the preliminary fractionation of the petroleum-ether extract with VLC has been reported previously [3]. An aliquot (1.83 g) of VLC fraction 5 (7.63 g, eluted with hexane/AcOEt 9:1 and 8:2) was further separated by HSCCC (prep. column; hexane/abs. EtOH/AcOEt/H<sub>2</sub>O 83:67:33:17 ( $\nu/\nu$ ) with the lower phase being the mobile phase (modified after [7]), rotation speed 450 rpm, flow rate 4 ml/min, column temp. 20°, flow direction from centre to periphery of the column; displaced amount of stationary phase 260 ml). Based on the TLC similarities, various fractions were combined to give 8 fractions at all. TLC analysis (acylphloroglucinol derivatives give turquoise to grey-blue spots on TLC, after being sprayed with the vanillin/sulfuric acid reagent) indicated *Fr. 3* (43.6 mg), *4* (27.1 mg), *5* (141.0 mg) and 7 (127 mg) to be of further interest. Consequently, these four fractions were further purified by reversed-phase HPLC (MeCN/H<sub>2</sub>O/CF<sub>3</sub>COOH 70:30:0.5, flow 7.5 ml/min): **4/4a** (2.8 mg) and **5/5a** (2.1 mg) from *Fr. 3*, **4/4a** (1.6 mg), **5/5a** (3.7 mg), and **2/2a** (2.6 mg) from *Fr. 4*, **5/5a** (3.5 mg), **6/6a** (5.9 mg), and **3/3a** (4.3 mg) from *Fr. 5*, and finally **1/1a** (5.8 mg) from *Fr. 7*. All were obtained as colorless or slightly yellowish oils.

The more polar VLC *Fr. 10* (2.45 g) was subjected to open CC (gradient hexane/AcOEt 9:1  $\rightarrow$  AcOEt (100%)): 18 fractions. The antibacterial active *Fr. 8* (299 mg) was then applied in three separate portions (59 mg, 2 × 120 mg) to HSCCC (anal. column, conditions as mentioned above, except that due to the smaller volume of the anal. column, flow rate of 1 ml/min and displaced amount of stationary phase 30 ml). Identical fractions were combined to give 4 fractions. Compound **7** (10.1 mg), a colorless oil, was isolated from *Fr. 3* by reversed-phase HPLC (MeCN/H<sub>2</sub>O 5:5 (0–10 min), and 6:4 (10–25 min), flow 7 ml/min). Within a few days, the isolate decomposed in CDCl<sub>3</sub> soln. quantitatively to **8/8a**.

*Cytotoxicity Study.* The cytotoxicity of the phloroglucinol derivatives was determined by means of a KB cell line (ATCC CCL 17) as described by *Ankli et al.* [8]. The test was performed at least in triplicate.

Antibacterial Assays. The test organisms were Bacillus cereus (ATCC 10702, Gram-positive), Staphylococcus epidermidis (ATCC 12228, Gram-positive), and Micrococcus luteus (ATCC 9341, Gram-positive). Antibacterial assays were carried out by the doubling dilution method with a modified procedure as published previously [3]. All compounds were tested, except the decomposed isolate **7**. Chloramphenicol was used as a positive control.

Enaimeone A (= rel-(1R,5R,6S)-4-Hydroxy-6-(1-hydroxy-1-methylethyl)-5-methyl-1-(3-methylbut-2-enyl)-3-(2-methylpropanoyl)bicyclo[3.2.1]oct-3-ene-2,8-dione; **1/1a**). Yellow oil.  $[\alpha]_{D}^{20} = +27.8 (c = 0.10, MeOH). UV$ (MeOH): 274 (4.1), 203 (3.9). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. DEI-MS (pos.): 362 (12,  $M^+$ ), 344 (4,  $M - H_2O]^+$ , 235 (44), 205 (18), 165 (24). HR-MALDI-MS (pos.): 385.1983 ( $[M + Na]^+$ ; calc. 385.1991).

Enaimeone B (=rel-(1R,5R,6R)-4-Hydroxy-6-(1-hydroxy-1-methylethyl)-5-methyl-1-(3-methylbut-2-enyl)-3-(2-methylpropanoyl)bicyclo[3.2.1]oct-3-ene-2,8-dione; **2/2a**). Colorless oil.  $[a]_D^{20}$  =+29.4 (c = 0.10, MeOH). UV (MeOH): 274 (4.1), 203 (3.9). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. FAB-MS (pos.): 363 (100, [*M* + H]<sup>+</sup>). HR-MALDI-MS (pos.): 385.1982 [*M* + Na]<sup>+</sup> (calc. 385.1991).

Enaimeone C (=rel-(IR,5R,6R)-4-Hydroxy-6-(1-hydroxy-1-methylethyl)-5-methyl-3-(2-methylbutanoyl)-1-(3-methylbut-2-enyl)bicyclo[3.2.1]oct-3-ene-2,8-dione; **3/3a**). Yellow oil.  $[\alpha]_{20}^{20}$  = +32.9 (c = 0.10, MeOH). UV (MeOH): 274 (4.0), 203 (4.0). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 1* and 2. DEI-MS (pos.): 376 (6, *M*<sup>+</sup>), 358 (5, [*M* – H<sub>2</sub>O]<sup>+</sup>), 249 (100), 205 (15), 165 (28). HR-MALDI-MS (pos.): 415.2090 ([*M*+K]<sup>+</sup>; calc. 415.1887).

*l'*-Hydroxyialibinone A (=8-Hydroxy-3 $\beta$ -(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2-methylpropanoyl)-5 $\beta$ H-tricyclo[5.3.1.0<sup>1,5</sup>]undec-8-ene-10,11-dione = rel-(2R,3aS,7S,8aS)-1,2,3,7,8,8a-Hexahydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-1,1,7-trimethyl-5-(2-methylpropanoyl)-4H-3a,7-methanoazulene-4,9-dione; **4/4a**). Yellow oil. [a]<sup>2D</sup><sub>D</sub> = +3.7 (c = 0.10, MeOH). UV (MeOH): 274 (4.1), 203 (3.8). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 3* and 4. DEI-MS (pos.): 362 (4,  $M^+$ ), 344 (37, [ $M - H_2O$ ]<sup>+</sup>), 275 (10), 205 (62), 149 (16). HR-MALDI-MS (pos.): no  $M^+$  observable.

*l'*-Hydroxyialibinone *B* (=8-Hydroxy-3α-(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2-methylpropanoyl)-5βH-tricyclo[5.3.1.0<sup>1,5</sup>]undec-8-ene-10,11-dione = rel-(2R,3aR,7R,8aR)-1,2,3,7,8,8a-Hexahydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-1,7,7-trimethyl-5-(2-methylpropanoyl)-4H-3a,7-methanoazulene-4,9-dione; **5/5a**). Yellow oil. [a]<sub>20</sub><sup>20</sup> = -35.7 (c = 0.10, MeOH). UV (MeOH): 272 (4.1), 204 (3.8). <sup>1</sup>H- and <sup>13</sup>C-NMR: Tables 3 and 4. FAB-MS (pos.): 363 (35, [M + H]<sup>+</sup>), 345 (100, [M – OH]<sup>+</sup>). HR-MALDI-MS (pos.): 385.1982 ([M + Na]<sup>+</sup>; calc. 385.1991).

*l'*-Hydroxyialibinone D (=8-Hydroxy-3α-(1-hydroxy-1-methylethyl)-4,4,7-trimethyl-9-(2-methylbutanoyl)-5βH-tricyclo[5.3.1.0<sup>1,5</sup>]undec-8-ene-10,11-dione = rel-(2R,3aR,7R,8aR)-1,2,3,7,8,8a-Hexahydro-6-hydroxy-2-(1-hydroxy-1-methylethyl)-1,1,7-trimethyl-5-(2-methylbutanoyl)-4H-3a,7-methanoazulene-4,9-dione; **6/6a**). Yellow oil.  $[a]_{D}^{20} = -30.3^{\circ}$  (c = 0.10, MeOH). UV (MeOH): 272 (4.1), 203 (3.9). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Tables 3* and 4. FAB-MS (pos.): 377 (32,  $[M + H]^+$ ), 359 (100,  $[M - OH]^+$ ); HR-MALDI-MS (pos.) 399.2137 ( $[M + Na]^+$ ; calc. 399.2148).

Furonewguinone A (=2,3,3a,5-Tetrahydro-3a-hydroxy-2-(1-hydroxy-1-methylethyl)-5-methyl-5-(3-methylbut-2-enyl)-7-(2-methylpropanoyl)benzofuran-4,6-dione; 7). Yellow oil. <sup>1</sup>H- and <sup>13</sup>C-NMR: Table 5. Further physical and spectroscopic data not determined due to instability.

*Furonewguinone* B (= 3,3a,7,7a-*Tetrahydro-3a,6,7a*-*Trihydroxy-2-(1-hydroxy-1-methylethyl)-7-methyl-7-(3-methylbut-2-enyl)-5-(2-methylpropanoyl)benzofuran-4(2H)-one;* **8/8a**). Yellow oil (decomposition product of **7**).  $[a]_{10}^{20} = +15.6 (c = 0.10, MeOH)$ . UV (MeOH): 278 (4.2), 203 (3.9). <sup>1</sup>H- and <sup>13</sup>C-NMR: *Table 5*. FAB-MS (pos.): 397 (12,  $[M + H]^+$ ), 379 (100,  $[M - OH]^+$ ). HR-MALDI-MS (pos.) 419.2038 ( $[M + Na]^+$ ; calc. 419.2046).

Special thanks go to Mr. *M. Wasescha* (Institute of Pharmaceutical Sciences, ETH-Zurich) for performing the KB-cell cytotoxicity assays. We thank *P. Katik* (National Herbarium, Lae, Papua New Guinea) and Dr. *M. M. J. van Balgooy* (Rijksherbarium, Leiden, The Netherlands) for identification of the plant material. Thanks are also due to Dr. *E. Zass* (ETH-Zurich, Chemistry Department) for performing literature searches as well as Mr. *O. Greter*, Mr. *R. Häfliger*, and Dr. *W. Amrein* (Mass Spectral Service of the Laboratory of Organic Chemistry, ETH Zurich) for recording the mass spectra. This work was supported by the *Swiss National Science Foundation*.

## REFERENCES

- [1] D. Holdsworth, E. Lacanienta, Quart. J. Crude Drug Res. 1981, 19, 141.
- [2] A. J. Leach, D. N. Leach, G. J. Leach, Science in New Guinea 1988, 14, 1.
- [3] K. Winkelmann, J. Heilmann, O. Zerbe, T. Rali, O. Sticher, J. Nat. Prod. 2000, 63, 104.
- [4] K. Winkelmann, J. Heilmann, O. Zerbe, T. Rali, O. Sticher, J. Nat. Prod. 2001, 64, 701.
- [5] S. Trifunovic, V. Vajs, S. Macura, N. Juranic, Z. Djarmati, R. Jankov, S. Milosavljevic, *Phytochemistry* 1998, 49, 1305; H. C. J. Orth, H. Hauer, C. A. J. Erdelmeier, P. C. Schmidt, *Pharmazie* 1999, 54, 76; L. Verotta, G. Appendino, E. Belloro, J. Jakupovic, E. Bombardelli, *J. Nat. Prod.* 1999, 62, 770.
- [6] L. H. Hu, K. Y. Sim, Tetrahedron 2000, 56, 1379.
- [7] L. A. Decosterd, H. Stoeckli Evans, J. C. Chapuis, J. D. Msonthi, B. Sordat, K. Hostettmann, *Helv. Chim. Acta* 1989, 72, 464.
- [8] A. Ankli, J. Heilmann, M. Heinrich, O. Sticher, *Phytochemistry* 2000, 54, 531.